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The triplet invariant revisited
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It is shown that the formula for the positivity of the triplet invariant in P1
changes drastically if one uses a different statistical method by imposing
acceptable and unbiased additional structural information. We obtain a much
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1. Introduction

It is widely believed that the statistical formula for the triplet
invariant (see e.g. Cochran, 1955; Hauptman, 1976) cannot be
enhanced if no additional chemical structural information is
used. There are two different approaches for calculating the
joint probability distribution (j.p.d.) of a set of structure
factors. The first approach was introduced by Karle and
Hauptman (see e.g. Karle & Hauptman, 1958; Hauptman,
1976). This method also leads to interesting algebraic
formulae. It considers the reciprocal vectors as random vari-
ables (r.v’s) and uses a uniform weight on reciprocal space; the
atomic vectors are kept fixed. In the second approach, the
reciprocal vectors are fixed and the structure factors are
considered as r.v.’s of the atomic position vectors, which are
themselves considered as r.v.’s ranging over the unit cell. One
normally takes a uniform j.p.d. for these atomic vectors (see
e.g. Klug, 1958; Giacovazzo, 1976). However, one can also take
additional (chemical) information into account. In this case we
also get new formulas for the j.p.d.’s of structure factors (see
e.g. Heinerman et al., 1977).

It happens that the two statistical methods mentioned
above give the same j.p.d.’s if we consider only a uniform j.p.d.
of the atomic position vectors. Maybe this is the reason why it
is believed that the j.p.d. of a triplet set of structure factors
cannot be enhanced. In this paper we show that using the
second statistical method and using general additional infor-
mation one obtains a new j.p.d. of the structure factors of a
triplet.

2. The joint density of the atomic vectors

We consider the space group P1 and a crystal with N atoms.
For the sake of simplicity we consider an equal-atom structure.
Letr; [1 <i <t = (N/2)] be the atomic position vectors in the
asymmetric unit. Let

E, = (2/N'?) 2[: cos(2r7h - ;) (€))

lower probability for the strength (almost ) of the triplet formula than the

be the structure factor corresponding to the reciprocal vector
h. Denote by x; (1 <i <¢) t random vector variables that
range over the unit cell with respect to a joint probability
density f(x,...,%,) to be determined shortly. The usual
approach is to take f(x;,...,x,) =1 (see eg Klug, 1958;
Peschar & Schenk, 1987; Giacovazzo, 1976).

Suppose we consider the set of all piecewise linear paths
with ¢ vertices that lie in the unit cell. We want the x; to range
(perhaps uniformly) over these ¢ vertices (that represent
random atomic position vectors) and then we want to inte-
grate over all paths. We can do this in the following way.
Denote these ¢ vertices by yy, ..., Yy,. We consider the condi-
tional density

t 2 t
Fis e XY ) = H[ﬁza@ —yg}h(xl,...,x,),
i=1 s=1
@

where A(x,, ..., X,) is a density that can be imposed; e.g. if we
let the x; range uniformly over the t vertices y,, ..., y,, then we
can take A(x,...,x,) = 1. We can also imagine that not all
paths are equally probable. So we can also consider a joint
density g(y;,...,y,) for the y; Then the total joint density
f(x4, ..., x,) can be written as

fxx) = [fx, - .y dy; ...dy,.

®)
We recover the usual Bayesian approach. Furthermore, let us

denote every random variable Z(x,, ..., x,) of the x; with a
circumflex (7).

XY YE(Y -

3. The triplet invariant

We shall consider the case

h(xq, ... y) =1 4

That is, the x; range uniformly over the different y; and all
paths are equally probable. So what we are doing is to use the
additional information that the probability distribution of the
r.v. X; must be a sum of § functions, i.e. f(xq, ..., X,) must be

X)) =8y, ...
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proportional to []i_; [ Y5 8(x;
parameters.

Next let us define for every reciprocal vector h the random
variable

—ys)] where the vy, are

t
E, = E(x,,...,x) = (2/N"*)Y cos@2nh-x;)). (5
i=1
This choice of r.v. instead of F, = N'/2E, has nothing to do
with any hidden a priori uniform distribution but simply with
the fact that, as we will see below, (I:“ﬁ) = O(N) whereas
(£ =o0().
For every r.v. Z(xy, . . .,

(Z(x1, ..., X,))

x,) let us define

EIZ(XI,...,Xr)f(Xl,...,

We want to calculate the j.p.d.

x,)dx, ...dx,. (6)

P(Ey, Ey, Eh+k) = <8(Eh - Eh)B(Ek - Ek)B(EIH—k - Eh+k)>,
(7
where § is Dirac’s delta function §(x—y)=
(1/2m) [, du expliu(x — y)]. Define
E,=E, E,=E, E=E, (8)
Then
P(E,, E,, E3)
=127 [ duy... [ duyexp(—iu,E; ... — iusEs)
X @(uy, Uy, uz), )

where
o(uy, uy, uy) = (exp(iulfil + iu2E2 + iu3f53)). (10)

Define h; = h,h, =k, h, = h 4 k. Then the right-hand side
of equation (9) equals

fcly1 .dy { [dx1 |:(2/N)Zb‘(x1 y, ]
X exp [(21'/1\11/2) > u; cos(2rh; - xl)} }[. (11)
Let us define ]
i) = | [ax[@m oo, -y

X exp |:(2i/N1/2) > u;cos(2rh; - xl)] }
J
(12)

Then equation (11) is equal to [dy,...dy, @(u, u,, uz, y)"

Next, for an equal-atom structure we can replace
(2/N) 22:1 8(x; —y,) by
3 U, (y) exp(—27ig - x,), (13)
q
where
U,y) = A/N")E(y,.....y) and y=(y;,....y). (14)

Then ¢(u,, u,, u5, y) is given by

P(uy, Uy, us, y) = /dxl [ > f]q(Y) exp(—2miq - Xl)]
q
X exp[(2i/Nl/2)uj cos(2rth; - xl)], (15)

where we have summed over repeated indices. Developing
o(u,, uy, uy, y) asymptotically,

2
Uu:
Puy, uy, uz,y) =1+ ZN1/2 Uhj()’) - Zﬁ,

2
1 Uzh()’) Uzk(Y) U2h+2k(y)
2”1;”2 (D) + Ty o)
2 [) + O]
2”2”3 [0(3) + Do)
2iu u,yu, 1
oo + <) 1

In equation (16) f]q(y) is considered to be of order 1/N'/2.
Developing asymptotically @(u,, u,, u5,y)' (where t = N/2)
we get

Oy, ty, us, y) = expliug E(y) + ity E(y) + it Ey o (y)]

x exp(—ui — huj — lu3)
2 2
x 11— 2N1/2 EZh(Y) Nl/z E2k(Y)

2
u N
5 N3l/2 Epian(y) — Nl N2 [ h+k(y) + Ey k()]
Nl N2 [ h(Y) + E2h+k(Y)]
U,u
I\;l/; [Ek(y) + Eh+2k(Y)]
iU Uy, 1
o)) .

Next we remark that (a proof is given in the Appendix)

[dy; ...

o]
exp(—%uf — %ug — %u%)/ exp(iu, Ey + i, Ey + iuzEy )
—00

c 1o g o8 g g
2N1/2 2h 2N1/2 2k 2N1/2 2h+2k

dy, p(u, uy, us, Y)t =

uyu
- ]\;1/2 (Eh+k + Ell k) N1/2 (Ek + E2h+k)
Uylis iU Uy 1
- W(Eh + Enia) — iz T O(ﬁ)]
X Py(En Ex, Ey i Eops- -+ By )AEZAEVEy (A Ey,. . .dEy o,
(18)
where  Py(Ey, Ey, Eypy, Eops -+ Eypgy) i the jpd. of
Ey, ..., Ey 5 with respect to the uniform distribution of the
y;, i.e
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Py(Ey, Evs Eypyr Egps - -
= [dy,...dy,8(E, —

E h+2k)

Eh) X ... X S(Eh+2k - Eh+2k)7 (19)

where in equation (19) Eh means Eh(y1, ...,y,) etc. Since e.g.

f PO(Eh’ Ey, Eh+k7 Eh+2k)Eh+2k dEh+2k = 0(1/N1/2), (20)

—00

0
f PO(Eln Ek’ Eh+k7 E2h’ tet Eh+2k)

—00

X f(Ey, Ex, Enp) dEy dEL dEy,  dEy, ... dEy o

o0
= f Po(Eh’ Ek’ Eh+k)f(Ehv Ekv Eh+k) dEh dEk dEh+k’
—00

@n

and

1 3
Py(Ey, Ex, Eng) = I:—]/z:| exp(—%Eﬁ cee %Eﬁ+k)
(2r)

1 1
[1+ EEEM+0< )}

we obtain (using formulas from the Appendix)

(22)

@luy, uy, Us)

Z/dY1~~ dytﬁﬂ(”ls”zv%vyy

1 2

3

|:(2 )1/2i| exp( 2”1 Uy — %M%)

X / dE, dE, dE, ., exp(iu Ey + i, E\ + iusEy )
—00

iUy U,

X exp(—%Eﬁ — %Eﬁ —1E ) |:1 —

N2 T N2
T L 1
N2 ——E, N2 E, 4+ —— N2 E\EyEyy + O
iu, )(iu, ) (iu
—explad — i 1)1 +%a +341)
———

=5

+ 0(%)} 23)

Thus [see equation (9)]

1\ ™
P(E,, E,, E5) = <E> f duy du, duy o(uy, uy, us)
—00

x exp(—iu E; — i, E, — iusE;)

1\’ [
= (27_[) /_oo du, du, du,

i, E, — iusEy)

X exp(—uf - u% — u%)

[1 o Gy ;) + o(N)}

x exp(—iu E; —

(1 * duy du, du;,
~\on) [ 21221221
E, . E2 . E3
X exp| ity 51 12 21/2 s 2172

x exp(—du; — L — Lu3)

S /Uy N/ Uy \/[. Us 1
! +W( ﬁ)( 21/2)< 21/2> +0
1\ /1 3/2
() 11
I 5 (1\E E, E, 1
| <z—/) PSR VY
1\*?
—(5) ewcig-ig-1m
T
[y SEEE (1
8N/ N
1\
= (4—) exp |: —1E} - 1B} —1F;}
T

SE,E,E, 1
+=nv oy | (24)

From which it follows that the probability P, that the sign of
the triplet E,E, FE, ., is positive given the absolute values
|Eyl, |Ex|, | Ey il is given by

5|E\E,E
P (E EVEy ) = %“‘ %tanh<_| — d)’ (25)

8 NI

whereas the classical formula (Cochran, 1955) is

|E,E,E,|
P+, classical (EhEkEh+k) = % + %tanh <% . (26)

4. Conclusion

The introduction of joint densities f(xy,...,x,) of atomic
variables that differ noticeably from the classical approach can
give us new statistical formulas that are very different to the
classical formulas. A lot of research has still to be done.

APPENDIX A

| exp(ibx) exp(—iax?) dx =

—00

(27/a)'? exp[—4(b?/a)]. (27)
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Of exp(ibx) exp(—x?) dx = (21)"/ exp(—1b%).  (28)
ofo (iu)" exp(—iuE) exp(—u?) du = (27)"* exp(—LE?)H,(E).
h (29)

Hyx) = 1. (30)

H,(x) = x. (31)

Hy(x) =x* — 1. (32)
H,(x) = x* — 3x. (33)
H,(x) = x* — 6x* + 3. (34)
Hy(x) = x° — 10x* + 15x. (35)

[ xexp(ibx) exp(—x?) dx = (27)'%ib exp(—1p%).  (36)

7 x? exp(ibx) exp(—2x?) dx = (27)"*(1 — b?) exp(—1b?).

—00

(37)

Proof of equation (18): For notational simplicity we
consider the case ¢[u; E,(y)] where y = (y;,...,Yy,)- Then

[ olu; Ey(y)]dy = [dy [ ou: E)S[E, — Ey(y)]dE,
= [¢(u; E,)dE, [dy3[E, — E,(y)]
P()(Eh)
= [(u; E,)Py(E,)dE,. (38)
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